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Abstract. We investigate the influence of energetic disorder, viscous damping and an external field on the
electron transfer (ET) in DNA. The double helix structure of the λ-form of DNA is modeled by a steric
oscillator network. In the context of the base-pair picture two different kinds of modes representing twist
motions of the base pairs and H-bond distortions are coupled to the electron amplitude. Through the
nonlinear interaction between the electronic and the vibrational degrees of freedom localized stationary
states in the form of standing electron-vibron breathers are produced which we derive with a stationary
map method. We show that in the presence of additional energetic disorder the degree of localization of
such breathers is enhanced. It is demonstrated how an applied electric field initiates the long-range coherent
motion of breathers along the bases of a DNA strand. These moving electron-vibron breathers, absorbing
energy from the applied field, sustain energetic losses due to the viscous friction caused by the aqueous
solvent as well as the impact of a moderate amount of energetic disorder. Moreover, it is illustrated that
with the choice of the amplitude and frequency of the external field, the breather can be steered to a
desired lattice position achieving control of the ET.

PACS. 87.15.-v Biomolecules: structure and physical properties – 63.20.Kr Phonon-electron and phonon-
phonon interactions – 63.20.Ry Anharmonic lattice modes

1 Introduction

Electronic transport (ET) through DNA has recently at-
tracted a lot of attention, especially in the context of
its role for biological functions such as the repair mecha-
nism after radiation damage and biosynthesis [1]. It was
proposed that ET through DNA proceeds along a one-
dimensional pathway constituted by the overlap between
π-orbitals in neighboring base pairs [2]. Recent measure-
ments have indeed suggested that DNA forms an effec-
tive one-dimensional molecular wire [3–11] which offers
promising applications in molecular electronics based on
biomaterials [12,13]. In contrast, it has also been reported
that DNA is insulting [14] so that the findings concerning
conductivity through DNA remain controversial.

There have been different attempts to model theoreti-
cally the charge transport in DNA utilizing transport via
coherent tunneling [2], incoherent phonon-assisted hop-
ping [15,16], classical diffusion under the conditions of
thermal fluctuations [17], variable range hopping between
localized states [18] and charge carriers assisted by soli-
tons [19] and polarons [20–22]. In fact in a recent paper
it has been argued that the polaron picture is relevant for
the hole transport in DNA [23].

a e-mail: hennigd@physik.fu-berlin.de

In the current study we propose a possible control
mechanism of ET in DNA relying on the impact of an
applied external field. For the modeling of the transfer
mechanism we use a nonlinear approach based on the con-
cept of polarons and breather solutions. The structure of
the bent double helix of λ-DNA is modeled by a steric
network of oscillators in the frame of the base pair pic-
ture [24–26] taking into account deformations of the hy-
drogen bond within a base pair and twist motions between
adjacent base pairs. The electron motion is described by a
tight-binding system. The nonlinear interaction between
the electron and the vibrational modes cause the forma-
tion of polarons and (standing) electron-vibron breathers.
We pay special attention to the influence of an external
field with respect to the realizable control of the ET under
the condition of energy dissipation due to the influence of
the viscous solvent and with the additional inclusion of
energetic disorder. The external field control of rate pro-
cesses and biochemical reactions has become of consider-
able interest recently [27–31].

The paper is organized as follows: In the first section
we describe the model for the ET along the bent structure
of the double helix of λ-DNA in the presence of an exter-
nal field and with viscous friction. In the second section
we discuss briefly the features of the static electron-vibron
breather solutions of the nonlinear lattice system with and
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Fig. 1. Schematic representation of the helicoidal structure of
the DNA model.

without energetic disorder. Subsequently, in the third sec-
tion we consider the activation of electron-vibron breather
motion and the control of ET through the external field.
Finally, we summarize and discuss the results.

2 Model for damped and driven ET in DNA

In our DNA model we cover the basic features of the DNA
double helix structure and consider the latter as a bent
double-stranded system for which in the frame of a base
pair picture the bases are treated as single nondeformable
entities. The helicoidal structure of DNA is then conve-
niently described in a cylindrical reference system where
each base pair possesses two degrees of freedom, namely
a radial variable measuring the transversal displacements
of the base pair (that is, deformations of the H-bond) and
the angle with a reference axis in a plane perpendicular
to the helix backbone which defines the twist of the he-
lix [26]. In Figure 1 we represent a sketch of the structure
of the DNA model.

The charge migration process is influenced by the dom-
inant vibrational modes of DNA stemming from trans-
verse vibrations of the bases relative to each other, viz., the
stretchings/compressions of the base pair distance within
a base pair plane and the torsional variations of the heli-
coidal twist [17–32]. The influence of other vibrational de-
grees of freedom (e.g., longitudinal acoustic phonons along
the strands are significantly restrained by the backbone)
can be discarded and the motion is restricted to the base
pair planes [33].

The Hamiltonian for the ET along a strand in DNA
under the influence of an external electric field consists of
four parts

H = Hel + Hrad + Htwist + Hfield , (1)

where Hel is the part which describes the ET across the
base pairs, Hrad and Htwist represent the H-bond vibra-
tions and the relative twist angle between two consecutive
base pairs, respectively. The last term Hfield represents

the Hamiltonian of the external field. The electronic part
is given by a tight-binding model

Hel =
∑

n

En |cn|2 − Vn n−1

(
c∗ncn−1 + cnc∗n−1

)
, (2)

with the index n denoting the site of the nth base pair and
cn determines the probability that the electron occupies
this site. En is the local electronic energy and Vnn−1 is
the transfer matrix element which is responsible for the
transport of the electron across the stacked base pairs.
We make the usual assumption that ET takes place solely
along the base pair sequence on a strand excluding ET
across base pairs (see, e.g., Ref. [2]).

The radial vibronic part Hrad models dynamical devi-
ations from the equilibrium length of the hydrogen bonds
linking a base pair. With a classical and harmonic treat-
ment Hrad is given by

Hrad =
1
2

∑
n

Mn

[
ṙ 2
n + Ω2

r r2
n

]
. (3)

The radial coordinates rn quantify the radial displace-
ments of the base units from their equilibrium positions
along the line bridging two bases of a base pair within the
base pair plane. We remark that polaronic ET is connected
only with small structural deformations of the hydrogen
bonds so that the harmonic approximation of the bond
vibrations is in order [17]. M denotes the reduced mass
and Ωr is the harmonic frequency of the bond vibration.

The Hamiltonian for the twist motion is given by

Htwist =
1
2

∑
n

Jn

[
θ̇ 2

n n−1 + Ω2
θ θ2

n n−1

]
, (4)

where θn n−1 is the relative angle between two adjacent
base pairs measuring the displacement from the equilib-
rium twist angle θ0, Jn is the reduced moment of inertia
and Ωθ is the frequency of the twist vibrations. The dy-
namics of the angular twist and radial vibrational motions
evolve independently on distinct time scales and can be re-
garded as decoupled degrees of freedom in the harmonic
approximation of the lattice dynamics of a DNA oscillator
network (see also [34]).

The interaction between the electronic variable cn and
the structure variables rn and θn n−1 originates from the
parameter dependence of the electronic parameters En

and Vn n−1. The diagonal term expressing the most ef-
ficient coupling is of the form

En = E0
n + k rn , (5)

and reflects the modulation of the on-site electronic
energy E0

n by the radial vibrations of the base pairs
[17–22]. In turn the actual charge occupation has its im-
pact on the local radial distortion of the helix. We include
also static diagonal disorder in the on-site electronic en-
ergy E0

n. The random energy values are simulated by ran-
dom potentials E0

n − Ē ∈ [−∆E, ∆E] with mean value Ē
and widths ∆E. As the transfer matrix elements Vn n−1
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are concerned we assume that they depend on the three-
dimensional distance between two consecutive bases in the
following fashion

Vn n−1 = V0 (1 − α dn n−1) . (6)

The quantity α regulates how strong Vn n−1 is influenced
by the distance and the latter is determined by

dn n−1 =
{
a2 + (R0 + rn)2 + (R0 + rn−1)2

− 2(R0 + rn)(R0 + rn−1) cos(θ0 + θn n−1)}1/2 − l0 , (7)

with

l0 =
√

a2 + 4R2
0 sin2(θ0/2) , (8)

and a is the distance between two neighboring base pair
planes measured in z-direction. Expanding the expres-
sion (7) up to first order around the equilibrium positions
yields

dn n−1 �
R0

l0
[ ( 1 − cos θ0 ) (rn + rn−1) + sin θ0 R0 θn n−1 ] . (9)

The effect of an external electric field on the ET in
DNA is described by the Hamiltonian representing the
electron-field interaction

Hfield = −e E(t)
∑

n

n a |cn|2 , (10)

with E(t) = E0 sin(ωt) is the time-dependent periodic
electric field directed along the strands and e is the elec-
tron charge.

Realistic parameters for DNA molecules are given
by [26–32]: a = 3.4 Å, R0 ≈ 10 Å, θ0 = 36◦, J =
4.982×10−45 kgm2, Ωθ = [0.526−0.744]×1012 s−1, Ωr =
6.252 × 1012 s−1, V0 � 0.1 eV and M = 4.982× 10−25 kg.

With a time scaling t → Ωr t it is appropriate to in-
troduce the dimensionless quantities:

r̃n =

√
MΩ2

r

V0
rn , k̃n =

kn√
MΩ2

rV0

, Ẽ0
n =

E0
n

V0

(11)

Ω̃ =
Ωθ

Ωr
, Ṽ =

V0

J Ω2
r

, α̃=

√
V0

M Ω2
r

α, R̃0 =

√
M Ω2

r

V0
R0

(12)

γ̃ =
γ

V0
, ω̃ =

ω

Ωr
, β̃ =

eE0√
M Ω2

rV0

· (13)

Afterwards we drop the tildes.

The equations of motion are derived from the Hamilto-
nian (2) and with the use of the expression (9) we obtain

i τ ċn = (E0
n + k rn) cn − iγ cn − βndn n−1 sin(ωt) cn

− (1 − α dn+1,n) cn+1 − (1 − α dn n−1) cn−1

(14)

r̈n = −rn − k |cn|2 − R0

l0
(1 − cos θ0)

× {
α

(
[c∗n+1cn + cn+1c

∗
n] + [c∗ncn−1 + cnc∗n−1]

)
− βn sin(ωt) |cn|2

}
(15)

θ̈n n−1 = −Ω2 θn n−1 − R2
0

l0
sin θ0 V

× {
α [c∗n cn−1 + cn c∗n−1] − βn sin(ωt) |cn|2

}
,

(16)

and the ratio τ = � Ωr/V0 determines the time scale sepa-
ration between the slow electron motion and the fast bond
vibrations. We remark that in the limit case of α = 0 and
constant E0

n = E0 the set of coupled equations represents
the Holstein system widely used in studies of polaron dy-
namics in one-dimensional lattices [35]. Furthermore in
the linear limit case emerging for α = k = 0 and ran-
dom E0

n the Anderson model is obtained [36,37]. (Note
that any E0

ncn term on the r.h.s. of equation (14) with
constant E0

n = E0 can be eliminated by a gauge transfor-
mation cn → exp(−iE0t/τ)cn.)

For a more realistic model of ET in DNA we incorpo-
rated the effect of the viscosity of the solvent associated
with friction of the electron motion (electronic energy dis-
sipation) which is described by the additional damping
term −iγcn on the r.h.s. of equation (14).

The values of the scaled parameters are given by τ =
0.2589, Ω2 = [ 0.709 − 1.417 ] × 10−2, V = 0.0823, R0 =
34.862 and l0 = 24.590. In our model study we treat the
electron-mode coupling strengths k and α for which no
reliable data are available as adjustable parameters. In
the subsequent studies we fix the values of these two free
parameters such that not too strong deformations of the
helix result which is crucial for the harmonic treatment of
the dynamics of the structural coordinates. The damping
constant lies in the range γ = [0.001, 0.01] corresponding
to ‘life times’ on time scales ranging from 10 ps to 100 ps
relevant for biological ET.

3 Stationary localized electron-vibron states

In the linear limit case of α = k = 0 the (decoupled)
isolated electronic tight-binding system i ċn = E0

ncn −
Vn+1 cn+1 − Vn cn−1 supports localized solutions (Ander-
son modes) provided disorder is included in the elec-
tronic on-site energy E0

n and/or transfer matrix elements
Vn [36,37]. On the other hand, for non-vanishing k and/or
α the nonlinear interplay between the electronic and the
vibrational degrees of freedom leads to the formation of
polaronic compounds as localized stationary solutions of
the coupled system (14–16) which can be exactly con-
structed in the absence of the external field and without
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the viscous damping term with the help of the nonlinear
map approach outlined in [38,39].

We describe briefly the main features of such polaron-
like solutions (which we also refer to as standing
electron-vibron breathers). The electronic wave function is
localized at a lattice site and the envelope of the ampli-
tudes decays monotonically and exponentially with grow-
ing distance from this central site (base pair). With
either increasing coupling strength(s) k and/or α or grow-
ing amount of disorder the degree of electronic localization
increases. Hence, we infer that the combined effect of the
two localization mechanisms, viz., nonlinear polaron and
linear Anderson-mode formation, respectively, leads to en-
hancement of the degree of localization compared to the
case when only one of the two mechanisms acts.

Like the electronic wave function the associated radial
and angular displacements are exponentially localized at
the central lattice site. Due to the overall non-positive ra-
dial and angular amplitudes, the H-bridges get compressed
while the helix experiences a local unwinding around the
site (base) attributed to the occupation peak of the local-
ized electron.

4 Breather motion initiated by the external
periodic field

In this section we study the ET supported by mobile
breathers propagating along the DNA. We demonstrate
that the coupling of the electron-vibron system, viz.,
the standing electron-vibron breather, to the periodically
varying external field initiates breather motion. Further-
more, despite the electronic energy dissipation (related
with the γ term) and energetic disorder, long-lived sta-
ble ET can be accomplished.

We consider the two situations of an ordered and disor-
dered DNA model possessing constant and random on-site
electronic energies, respectively. The ordered (periodic)
case arises, e.g., for synthetically produced DNA molecules
consisting of a single type of base pairs (e.g., poly(G)-
poly(C) DNA polymers) surrounded by vacuum [40]. On
the other hand, for a more general study we take static
diagonal disorder in the on-site electronic energy En into
account. The random values caused, e.g., by the inho-
mogeneous broadening of the sites of distinct ion pairs
with different energies were simulated by random poten-
tials En ∈ [−∆E, ∆E] with mean values Ē = 0 and dif-
ferent interval sizes 2∆E. As an illustration of the typical
propagation features of the breathers, we represent in Fig-
ure 2 the spatio-temporal evolution of the electronic and
the two vibrational breather components. We integrated
the set of coupled equations (14–16) with a fourth-order
Runge-Kutta method and the accuracy of the computa-
tion was checked through monitoring the conservation of
the norm

∑
n |cn(t)|2 = 1. The DNA lattice comprises 200

sites and periodic boundary conditions were imposed.
As Figure 2a reveals, under the impact of the ex-

ternal periodic field the (standing) electron breather be-
comes mobile and propagates directionally along the lat-
tice with a velocity oscillating around a constant mean

Fig. 2. Breather motion along the DNA in the ordered case.
Parameters γ = 0.001, ω = 1 and β = 0.1. (a) Electronic
breathers. (b) Radial breathers. (c) Angular breathers.

value (see further below). In addition, the amplitude pat-
tern breathes with the frequency of the applied peri-
odic field. At each instant of time, corresponding to a
period duration T = 2π/ω of the external field from
the moving large-amplitude breather, a small-amplitude
breather is radiated which performs oscillatory but con-
fined motions around the lattice position at which it has
emerged. The energy content of the main moving breather
Eel =

∑
n[ En |cn|2−Vn n−1 c∗ncn−1−Vn cnc∗n−1 ] gets peri-

odically modulated by the external field and performs os-
cillations around a constant mean value Ēel in the course
of time. There remains some excess energy which can nei-
ther be absorbed and carried by the mobile main breather
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nor is needed to compensate the energy losses due to fric-
tion. This excess energy is deposited into the lattice in
the form of additional electronic small-amplitude pinned
breathers. Nonetheless, by a suitable choice of the ampli-
tude β of the applied field, the energy balance between
the frictional energy loss and the external energy input
can be optimized in the sense that there remains (virtu-
ally) no excess energy and the ‘radiational’ creation of the
additional small-amplitude breathers is suppressed.

In order to assure that the degree of localization for
the moving electron breather is retained, we used the nor-
malized participation number defined as

P (t) =
∑

n |cn(0)|4∑
n |cn(t)|4 · (17)

Since the electronic wave function is normalized, the elec-
tron breather is completely confined at a single site if
P = 1 and is uniformly extended over the lattice if P is
of the order N , that is, the number of lattice sites. Hence,
P measures how many sites are excited to contribute to
the electronic breather pattern. In fact, for the moving
breather the participation number stayed close to its ini-
tial value throughout the travel of the breather along the
DNA lattice.

Similarly, the radial breather component depicted in
Figure 2b consists of a moving small-amplitude breather
accompanying the electron and additional ‘radiationally’
generated standing breathers, the amplitudes of which are
modulated by the external periodic field. We emphasize
that no significant structural deformations of the double
helix develop and the maximal amplitude of the stretch-
ings of the hydrogen bonds from the equilibrium length is
restricted to values less than 0.04 Å, justifying the har-
monic treatment of the corresponding bond potential. In
the case of the torsional breather component the radiation
effect is not as pronounced as for their electronic and radial
counterparts. Nevertheless there appears a moving tor-
sional breather propagating in unison with its electronic
and radial counterparts. However, the amplitudes of this
moving torsional breather are small compared to the am-
plitudes of the slowly varying and immobile breather rest-
ing at the starting site. Hence, ET in DNA mediated by
breathers is connected mainly with radial displacements
rather than angular deformations along the transfer path.

For further illustration of the ET we display in Fig-
ure 3 the velocity of the electron breather as a function of
the field amplitude β and for different values of the driving
frequency ω. Interestingly, the dependence of the breather
velocity on the field amplitude exhibits a resonance struc-
ture and the larger the driving frequency is, the broader
is the resonance curve while its peak position shifts to-
wards larger field strengths. Hence, for each frequency of
the field there exists an optimal field amplitude providing
a maximal possible breather velocity. The value of the lat-
ter is higher the lower the frequency of the applied chosen
field. In conclusion, with an appropriate choice of the am-
plitude β of the external field the velocity of the ET can
be tuned. We found that coherent ET can be stimulated

Fig. 3. The velocity of the moving electron breather as a func-
tion of the amplitude of the external periodic field β for differ-
ent frequencies as indicated on the graphs.

Fig. 4. Time-evolution of the first momentum of the electronic
amplitude. Parameters: γ = 0.001, ω = 1 and β = 0.1. Full line:
ordered case of constant on-site energy En = E0 = 0; dashed
line: random on-site energies with width ∆E = 0.1 and mean
value Ē = 0.

when the frequency of the applied field lies in the range
0.1 � ω � 3.25.

Figure 4 shows the time evolution of the first mo-
mentum of the electronic amplitude distribution n̄(t) =∑

n n |cn(t)|2, indicating the mobility of the breather in
the ordered (full line) as well as a disordered case (dashed
line), respectively. One concludes that the breather moves
effectively unidirectionally along the lattice although its
center performs oscillations around a straight line the
slope of which (in the depicted time versus position plane)
determines the breather velocity. Concerning the activa-
tion of breather motion we observe that the immediate
initial energy injection through the external field supplies
kinetic energy and the breather starts to move in a direc-
tion dictated by the initial phase of the external field. This
instantaneous energy deposition proceeds similarly to the
kick mechanism (relying on the so called pinning mode)
used to initiate breather motions in discrete lattice sys-
tem [41]. However, in the case of the kick mechanism the
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energy transfer is limited to an instant of time whereas for
the driving with the external periodic field energy is per-
manently delivered, which is also needed to compensate
the incessant energetic losses due to friction. Moreover,
for the kick mechanism the pinning mode (as a localized
mode of the corresponding tangent system with certain
spatial shape) has to be designed before its application as
an appropriate perturbation of the velocity component of
the breather. In the current case of external driving no
special pattern of the imposed external field is requested,
which can rather be of a general periodic type. The tempo-
ral periodic modulation of the breather velocity proceeds
in resonance with the periodic external force. When the
amplitude of the external field grows (diminishes) during
the time intervals (4n + 3)π/(2ω) ≤ t < (4n + 5)π/(2ω),
((4n +1)π/(2ω) ≤ t < (4n +3)π/2(ω)) with n = 0, 1, 2, ..,
the breather motion is accelerated (retarded) and hence,
the velocity exceeds (falls short of) its mean value.

As the influence of disorder is concerned, we find that
the stronger the degree of disorder is, the slower propa-
gates the corresponding breather. We underline that the
linear Anderson modes are generally immobile [36,37],
whereas the nonlinear breathers may be mobile [42]. In
our case the standing localized states of the disordered
and nonlinear DNA lattice system represent combinations
of linear Anderson modes and nonlinear breathers and
their respective contribution to a localized state depend
on the relative ratio of the amount of diagonal disorder
∆E and the nonlinear interaction strength measured by
the value(s) of k and/or α.

Equivalently, starting with the ordered case, i.e.,
∆E = 0, the corresponding localized state originates ex-
clusively from the nonlinear interaction between the elec-
tronic subsystem and the vibrational ones and the width
of the associated amplitude patterns, i.e., the degree of
localization, is governed by the strength of the nonlinear
interaction. When additionally disorder is taken into ac-
count, the degree of localization increases compared to the
purely nonlinear case which diminishes also the ability to
move the localized state due to its stronger pinning to the
discrete lattice.

However, for undercritical amount of disorder, ∆E, the
localized states maintain to such an sufficient extent their
nonlinear breather character that the initiation of its mo-
tion is possible and thus conductivity persists. This be-
havior is illustrated in Figure 5 showing the breather ve-
locity as a function of the external field amplitude β for
a frequency ω = 1 and for growing amount of disorder,
∆E. With increasing ∆E the maximal possible breather
velocity becomes smaller and mobility is achievable up to
a moderate strength of disorder ∆E � 0.25. It was indeed
experimentally found that the random sequence of λ-DNA
is an electrical conductor [9].

Finally, for overcritical amount of disorder ∆E � 0.25
the initiation of coherent long-range ET along the DNA
lattice is suppressed. The motion of the localized state
(dominantly of linear Anderson-mode type rather than
a nonlinear breather) is restricted to oscillatory motions
around its starting position which is in compliance with

Fig. 5. Dependence of the velocity of the electron breather on
the field amplitude β and for different degree of randomness
in the on-site energies. Assignment of the line types to the
increasing amount of disorder: Full line (∆E = 0), dotted line
(∆E = 0.025), dashed dotted line (∆E = 0.05) and dashed
line (∆E = 0.1).

the fact that the linear Anderson-modes are actually im-
mobile. The amplitudes of these oscillations, viz., the ex-
cursions form the starting site, diminish with more en-
larged ∆E going along with gradual enhancement of the
pinning of the breather.

In reference [22] polaronic charge transport in DNA
was studied in the frame of an one-dimensional lattice
model for which the charge carrying unit is coupled semi-
classically to a nonlinear lattice model describing the
large-amplitude fluctuations of the base pairs. It was
demonstrated that when the charge carrier part of a
(static) polaron without its associated lattice deforma-
tions is placed initially in a randomly fluctuating chain
appropriate base pair distortions are induced which causes
the motion of the carrier in a random direction. When the
dynamically random deformations of the hydrogen bonds
exceed a certain critical size, the polaron interacts strongly
with them, and polaron trapping is observed.

We demonstrate now that the application of a low-
frequency external field offers a possibility to control the
range of ET in DNA. Our results are summarized in Fig-
ure 6 depicting the temporal behavior of the first momen-
tum of the electronic occupation probability for relatively
strong disorder ∆E = 0.2. The frequency of the imposed
external field is ω = 0.1 and its amplitude β is varied. For
β = 0.2 we find that in an initial phase the center of the
electron breather propagates steadily away from its start-
ing position and moves over more than thirty sites, corre-
sponding to directional long-range ET. Then the direction
of the motion is reversed but the electron breather does
not return completely to its starting position. Eventually,
the electron breather oscillates around a fixed lattice site
(base) being 22 sites apart from the starting position. Re-
markably, when the amplitude β is enlarged, the maxi-
mum of these oscillations diminishes while the frequency
increases. Furthermore, the central position around which
the oscillations take place is shifted downwards to lower
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Fig. 6. The temporal behavior of the position of the electron
breather center in the presence of a low frequency external
field. Parameters ω = 0.1 and diagonal disorder ∆E = 0.1.
Full line (β = 0.2), dashed line (β = 0.4) and dashed dotted
line (β = 0.6).

lattice sites. Hence, with the choice of an appropriate am-
plitude of the low-frequency external field, the control of
the range of the electron excursion along the DNA is pos-
sible.

The results of our numerical simulations suggest
that in order to activate and control the ET in DNA,
strong electrical fields with field strengths of the order
of 106 − 107 V/cm and oscillations which are fast com-
pared to the electronic transfer process are needed. In ref-
erences [28–31] the proposed control of longe-rang ET in
molecular systems utilizing a strong periodic field is based
on similar assumptions with respect to the field strengths
and the time scale separation between the fast oscillations
of the external field and the electron transfer rate.

5 Summary

In the present work we have studied the ET mechanism
in an idealized DNA model relying on the coupling of the
charge to vibrational modes of DNA. For the purpose of
nonlinear dynamical studies of DNA, strong simplifica-
tion is needed concerning the structure of the molecule.
As one restriction, in our model no inner degrees of free-
dom of the bases have been considered. This seems justi-
fied as the small and fast vibrational motions of the in-
dividual atoms are separated from the larger and slower
motions of the atom groups by a different time scale. Fur-
ther, we have not distinguished between the four different
base types and have treated each base as a single entity of
fixed mass. Finally, the coupling of the electronic ampli-
tude to ambient solvent coordinates has been conveniently
modeled by a simple friction term inducing electronic en-
ergy dissipation. Particularly, for a more elaborate study
of ET through DNA the accompaniment of the ET pro-
cess by electronic energy dissipation resulting from the
effects of a variety of both internal and external influ-
ences have to be considered in more detail. Furthermore,

real DNA molecules exhibit random structural imperfec-
tions of their double helix caused, e.g., by the random base
sequence and the deforming impact of the chemical sur-
roundings. In addition, the varying hydrophobic potential
of the base pair interactions depending on the ambient
aqueous solvent may leave the helix structures in irregu-
larly distorted shapes. Accordingly, for an improvement of
our model, solvent effects can be included by taking into
account real geometries of DNA obtained experimentally.

Within in the frame of our simple DNA model for the
λ-form of DNA, the double helix structure has been mod-
eled by a three-dimensional oscillator network and within
the base-pair picture angular twist motions of the base
pairs as well as their radial vibrations have been taken
into account. The nonlinear interaction between the elec-
tronic and the vibrational subsystems is responsible for
the formation of standing electron-vibron breathers which
have been constructed with the help of a nonlinear map
approach. In our investigations of ET in our DNA model
we have focused interest on the initiation of long-range
and stable breather motion along the DNA structure, in-
cluding also energetic disorder inherent to any real DNA
molecule. Furthermore, the effects of viscosity of the water
structure around DNA leading to electronic energy dissi-
pation have been incorporated in a damping term. We
have demonstrated that an applied electric field activates
the long-range coherent motion of breathers consisting of
traveling electron, radial and twist components along the
bases of the DNA strands. Moreover, varying the ampli-
tude of the applied field one is able to tune the prop-
agation velocity of the breather which can be exploited
to control ET in DNA. Regarding the role of energetic
disorder, we have found that the mobile breathers sus-
tain moderate amount of randomness, and conductivity
persists. However, for overcritical strength of disorder the
breather motion is inhibited preventing conductivity. Fi-
nally, with the application of a low-frequency external field
the breather can be steered to a desired lattice position
through amplitude-tuning of the applied field, where the
chosen initial phase of the latter governs the propagation
direction. In this way targeted control of the ET in DNA is
achievable. We hope that our proposed theoretical mech-
anism for the control of ET in DNA stimulates experi-
mental work in this direction. These experiments could
involve direct measurement of the electrical current (I-
V-characteristics) as a function of the external electrical
potential applied across the DNA molecule (for details
see e.g. [9]). Alternatively, the DNA conductivity can be
quantitatively assessed from the length dependence of the
electron transfer rates as a function of the external field
strength (see e.g. [7,8]). Especially the last method offers
the possibility to monitor the steered electron path.
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